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The emergence of a shockwave from the open end of a shock tube is studied, with
special emphasis on test fluids of high molar heat capacity, i.e. retrograde fluids. A
variety of wavelike vapour-liquid phase changes are observed in such fluids,
including the liquefaction shock, mixture-evaporation shock, condensation waves
associated with shock splitting and liquid-evaporation waves (these phenomena have
analogues in the polymorphic phase changes of solids; only the first two are treated
in this paper). The open end of the shock-tube test section discharges into an
observation chamber where photographs of the emerging flow are taken. Calculations
were performed with the Benedict—~Webb-Rubin, van der Waals and other equations
of state. Numerical (finite-difference) predictions of the flow were made for single-phase
and two-phase flows: solutions were tested against the experimental shock diffraction
and vortex data of Skews. The phase-change properties of the test fluid can be
quantified by the ‘retrogradicity ’ r(7"), measuring the difference in slope between the
P, T isentrope and the vapour-pressure curve, and the ‘kink’ k(7'), measuring the
difference between the single-phase and mixture sound speeds. Mixture-evaporation
(i.e. rarefaction) shocks appear to have a sonic—sonic or double Chapman—Jouguet
structure and show agreement with amplitude predictions based on k(T'). Liquefaction
shocks are found to show a reproducible transition from regular, smooth shock fronts
to irregular, chaotic shock fronts with increasing shock Mach number. This transition
can be correlated with published stability limits.

1. Introduction

A variety of phase changes proceed spontaneously and often quite rapidly from
a metastable state, without the need for significant heat transfer. Examples include
the condensation of water vapour in a supersonic nozzle, achieved by the rapid
isentropic expansion of the flowing vapour to a (metastable) state of supersaturation;
the commercial production of ‘dry ice’ by a similar expansion of CO, gas ; condensation
in a cloud chamber; bubble formation in a hydrogen bubble chamber; cavitation
around the screw propeller of a ship. In all of these examples, the required metastable
state is produced by a rapid reduction in pressure, that is an expansion flow. The
metastable state can be produced by other means, as in the case of a bubble column
for vapour-explosion research, in which tiny liquid drops are slowly heated to the
spinodal limit of thermodynamic stability, where explosive evaporation occurs.
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Ficure 1. Temperature—entropy diagrams of substances with increasing characteristic heat
capacities &,. The reduced temperature 7T ranges from 0.5 to the critical-point value 1.0. Only the
liquid and vapour-saturation boundaries are shown. (a) Ethene C,H,, &, = 4.03; (b) Propane C;H,,
&, = 9.64; (¢) n-Octane C;H,,, &, = 36.82; (d) Pf-methyldecaline C,,F,,, &, = 734.
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The work discussed here deals chiefly with shock-induced vapour-liquid phase
changes in fluids with large molar heat capacities, i.e. fluids with many molecular
degrees of freedom, octane for example. The vapours of such fluids tend to condense
on adiabatic compression (retrograde behaviour), as distinct from the vapours of fluids
of lower heat capacity, such as water, which tend to condense on adiabatic expansion
(regular behaviour). For liquid—vapour systems showing retrograde behaviour, many
of the accepted rules of gasdynamics are inverted and new phenomena appear, e.g.
the liquefaction shock wave deseribed by Dettleff ef al. (1979).

The distinction between retrograde behaviour (for fluids such as octane) and
regular behaviour (for fluids such as water) is essential to the substance of this paper
and will be further discussed in §2. Here the distinction is illustrated by the
temperature—entropy diagrams shown in figure 1. The substances illustrated show
the typical tendency for the saturated-vapour boundary ¢ to lean over to the right,
such that (ds/dT), takes on positive values (retrograde behaviour) with increasing
heat capacity c,. It is convenient to assign each substance a characteristic heat

capacit
e _ ) "
v R ’

i.e. the ideal-gas heat capacity at the thermodynamic critical temperature 7,
normalized by the gas constant R (in general, the non-dimensional heat capacity c,/R
will be denoted é, ). Compression of the vapour will lead to condensation for sufficiently
large values of ¢,, because the work of compression produces a correspondingly small
increase in temperature: in this case, the behaviour is ‘retrograde’, as typified by
octane in figure 1. For smaller values of &,, compression of the vapour will lead to
such a large temperature rise that no condensation is possible: the behaviour is
‘regular’ as typified by ethene and other common substances such as air and steam.

Retrograde phase changes, in the general sense of an adiabatic transition to a denser
phase under increasing pressure, are often found in solids in association with shock
waves (Zel’dovich & Raizer 1967; Davidson & Graham 1979). The synthesis of
industrial-grade diamond from graphite is one specific example (McQueen & Marsh
1968; Morris 1980). The ‘ice-skating’ transition from ice to water when the ice is
subjected to increasing pressure is a solid-liquid example.

A brief inspection of a temperature—entropy diagram such as figure 1 (d) suggests
the possibility of various adiabatic phase changes in retrograde liquid—vapour
systems. Several forms of wave-induced phase changes have recently been studied
and observed. The following list refers especially to liquid—vapour systems; it also
applies by extension to analogous solid-solid, solid-liquid and other systems.
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Liquefaction shock. A transition from vapour to liquid takes place across a
compression shock wave (Thompson & Sullivan 1975; Dettleff 1978 ; Dettleff et al.
1979, 1982). If the phase transition is complete across the wave, it is called a complete
liquefaction shock; otherwise, it is called a partial liquefaction shock.

Shock splitting. A single, partial liquefaction shock splits into two discrete waves,
which then diverge from each other (Thompson & Kim 1983; Speckmann 1984;
Thompson, Kim & Meier 1984). The first wave of the split-shock system is called the
Jorerunner shock, the following wave the condensation discontinuity or condensation
shock. In the linear, equilibrium description of shock splitting, the forerunner shock
and the condensation discontinuity propagate at the saturated-vapour sound speed
and the mixture sound speed respectively.

Rarefaction shock. A rarefaction wave steepens to form a rarefaction-shock
discontinuity. In the single-phase case, this will occur in the neighbourhood of regions
of negative nonlinearity, as discussed by Thompson & Lambrakis (1973) and by
Cramer & Kluwick (1984). In the two-phase case, the rarefaction shock will bridge
two points on each side of the saturated-vapour boundary, the upstream state lying
in the mixture region and the downstream state lying in the superheated-vapour
region.

Complete evaporation shock. A liquid is evaporated completely across a rarefaction
shock. Solutions of this type exist for van der Waals fluids (Slemrod 1983, 1984).
Solutions for non-equilibrium upstream states near the liquid spinodal show a double
Chapman—Jouguet structure. No experimental results corresponding to these models
are known to the authors.

Liquid-evaporation waves. Sudden reduction of the pressure on a liquid produces
a superheated metastable state, followed by evaporation. In the experiments of
Chaves (1980, 1984), the initial reduction of pressure takes place across a sharp
forerunner expansion wave propagating into the liquid; this is followed by an
evaporation discontinuity which propagates more slowly and is analogous to a
Chapman-Jouguet deflagration. The two-wave system is thus another example of
wave splitting.

The possible states upstream and downstream of these discontinuities are listed in
table 1. Several of the phenomena described above are interrelated: both shock
splitting and rarefaction shocks follow the (inverted) rule that compression waves
spread out in regions of negative nonlinearity (this terminology is formally defined
in §2). The forerunner wave and the liquid-evaporation wave found by Chaves have
distinct similarities with the waves treated here. Both the condensation discontinuity
and the evaporation wave show detonation-type adiabats, corresponding to non-
equilibrium upstream states. Although the condensation wave releases latent heat
into the vapour and the evaporation wave takes up latent heat from the liquid, these
adiabats are ‘endothermic’ and ‘exothermic’ respectively, in the conventional
terminology (Hayes 1958).

Chapman—Jouguet solutions are found experimentally in evaporation waves
(Chaves 1984) and appear to be present in rarefaction shocks. The asymptotic
Chapman—Jouguet solutions found for abrupt condensation in supersaturated steam
by Wegener & Mack (1958) are, of course, not found here, by virtue of the
‘endothermic’ adiabat form.

Additional phenomena not described here are likely to be especially interesting in
retrograde cases — vapour explosions, for example, would be expected to show greater
strength, because the energy stored in the liquid at a given superheat increases with
the liquid heat capacity.
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Discontinuity Upstream state Downstream state
Liquefaction shock Vapour Equilibrium mixture or liquid
Forerunner shock Vapour Supersaturated vapour
Condensation discontinuity Supersaturated vapour Equilibrium mixture
Rarefaction shock Vapour or equilibrium mixture  Vapour
Forerunner wave Saturated liquid Superheated liquid
Liquid-evaporation wave Superheated liquid Equilibrium mixture

TaBLE 1. Summary of states at a discontinuity

Itisremarkable that many of the rules of ordinary gasdynamics are inverted simply
by increasing the heat capacity of the fluid. This may help to explain why several
of the phenomena described above have been judged impossible. Bethe (1942) ruled
out shock splitting and rarefaction shocks in fluids, Landau & Lifshitz (1959) did the
same for liquefaction shocks; certain textbooks ‘demonstrate’ the impossibility of
rarefaction shocks, usually based on a second-law argument.

Although retrograde phase changes are usual in many and diverse two-phase
systems, they represent a marked departure from past experience in liquid—vapour
systems. Whether the novelty of these phase changes will find proportionate technical
or scientific relevance remains to be seen.

In small-scale Rankine-cycle heat engines (in the range of 10-50 kW, say) there
is a case for multiatomic, retrograde working fluids. The flow behaviour in the
turbines and compressors of such engines can be predicted on the basis of further
experimental and analytical studies. In hydrocarbon-fuel combustion, interesting
possibilities exist for the generation of vapour-phase fuel (and consequent efficient
combustion) by fast adiabatic evaporation, related to the laboratory experiments of
Chaves (1980, 1984). This applies to fuel injection of internal combustion engines in
particular; retrograde phase changes may also be pertinent to the transient events
within a piston engine. In separation processes, the behaviour of simple devices such
as centrifugal-effect separation nozzles (Ehrfeld 1983) may be favourably influenced
by partial liquefaction on the outer perimeter. Finally, rapid heating as achieved in
a liquefaction shock (accompanied by a large increase in density) could be used, for
example, to ‘switch on’ organic chemical reactions: in a transient process like the
one at the closed end of a shock tube, the reaction would then be switched off or
quenched after a few milliseconds.

Applicability to scientific studies could also be mentioned. It is possible to produce
a short-duration critical state behind a liquefaction shock, for example at the closed
end of a shock tube, and by this means measure the critical temperature and pressure
of thermally unstable organic fluids. Two-phase sound-speed measurements are
discussed in this paper in a later section. Critical-supersaturation experiments are
especially convenient and could provide nucleation specialists with a new field for
validating theoretical models. Convection experiments in gravitational or centrifugal-
force fields should prove especially interesting for retrograde fluid systems, simply
because condensation occurs with increasing (rather than decreasing) pressure: in a
retrograde atmosphere, cumulus clouds would sink toward the surface of a planet
before producing precipitation, rather than rising. Finally, the many flow instabilities
found in dynamic retrograde phase changesoffer interesting challenges in fundamental
fluid dynamics: the tiny vortex rings observed near the liquefaction shock front
(Dettleff et al. 1979, 1982) appear to provide a rare example of a molecular event
(nucleation) manifested in a macroscopic instability.
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2. Regular and retrograde behaviour

With increasing molecular complexity, the familiar bell-shaped saturation curve
of a temperature—entropy diagram slopes over to the right, as shown in figure 1. This
behaviour is described by the following identity for the slope of the liquid and
vapour-saturation boundaries:

(37), = 7(7), (o7, @

Partial derivatives and heat capacities correspond to single-phase values in the region
immediately adjacent to the saturation boundary o (i.e. liquid or vapour, the latter
being emphasized in the following) and the subscript o refers to saturation properties.
On the liquid side, both of the right-hand terms are positive right up to the critical
point and the slope given by (2) is positive. On the vapour side, the first right-hand
term c, is always positive and the second term is always negative. For sufficiently
large values of the vapour ¢,, the slope given by (2) can then become positive,
corresponding to retrograde behaviour. Near the critical point on the vapour side,
however, the slope (ds/dT), will always be negative, because the value of (dv/dt),
approaches — o0 much more rapidly than ¢, approaches + 00, as described by the
respective critical exponents (the above statement also holds for a classical van der
Waals description, in which ¢, remains finite). These features are illustrated in figure 2
for the case of benzene. Between points A and B on the saturated-vapour boundary,
the phase-change behaviour is retrograde.

From corresponding-states calculations (Lambrakis 1972), it is found that the
saturated-vapour boundary just reaches the vertical (ds/dT has a value of zero) for
¢, = 11.2, a value which happens to correspond to sulfur hexafluoride SF, and falls
between propane and butane in the alkane-series hydrocarbons. Benzene, with a
characteristic heat capacity &, = 17.1, thus shows a limited degree of regtrograde
behaviour. In order to quantify the ‘retrogradicity’, it is convenient to introduce the
non-dimensional parameter r(7T'),

m=() (%),

where the partial derivative refers to the value in the single-phase region (vapour in
the present case) adjacent to the saturation boundary o and the total derivative refers
to the variation along the saturation boundary, as in (2). Because the slope (dP/dT),
of the vapour-pressure curve is positive, r(T') will necessarily have the same sign as
(ds/dT),, provided that the thermal-expansion derivative (0v/0T), > 0. Thus,
retrograde behaviour is normally associated with » > 0 and regular behaviour with
r < 0 on the vapour boundary. The behaviour of r(T) along the saturated-vapour
boundary of figure 2, with » > 0 between A and B, r = 0 at A and B, and » < 0 above
A and below B, is characteristic of all fluids showing retrograde behaviour. The
dependence of such behaviour on the single-phase heat capacity can be shown by

writing (3) in the form
_% 9’5) (d_T> _
r) = T(av )t @

in which the coefficient ¢, plays the dominant role in fixing the magnitude of the
product on the right-hand side. Using the Clapeyron equation, (4) can be rewritten as

M =e,(5) Bt ®

3-2
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Fieure 2. Temperature—entropy diagram for benzene. Physical properties at the critical point:
T, =562.16 K, F, = 48.98 bar, ¢, = 17.09. The triple temperature is 7}, = 278.68 K. The point C
on the saturated-vapour boundary has the same entropy as the critical point CP. Maximum and
minimum entropy on the saturated-vapour boundary are at A and B respectively (Anon 1973).

where v,,(7)) is the volume change on evaporation and L(7) is the latent heat
(enthalpy of vaporization). In the low-pressure approximation, corresponding to an
ideal-gas vapour and the Clausius—Clapeyron equation, this reduces to

nT) = cg’TT—L (6)

The parameter in this form often occurs in heat-transfer problems with phase change,
see forexample Knuth (1959) and Kosky (1968). Equation (6) illustrates nicely a basis
for retrograde behaviour, that the energy stored in the molecular degrees of freedom
be large compared to the latent heat. For nonlinear molecules containing » atoms,
the ideal-gas heat capacity c), approaches a maximum value (3n-2)R with increasing
temperature. The latent heat L is independent of molecular complexity in the first
approximation and depends on reduced temperature T according to (Reid, Prausnitz
& Sherwood 1977) L = RT,f(T), where R is the gas constant, 7, is the critical
temperature; f(7') decreases monotonically with temperature, vanishing at the
critical point where 7' = 1. According to (6), » thus tends to increase with temperature,
because both ¢},(T') and 7'/ L are increasing, and to increase with molecular complexity.
Thus, substances with sufficiently large values of ¢, will always show retrograde
behaviour over some part of the temperature range of liquid—vapour coexistence. All
substances will show regular behaviour at very low reduced temperatures and again
at high reduced temperatures, where the (do/dT), term in (2) will dominate.

Regular and retrograde behaviour can be conveniently represented in the pressure—
temperature plane, as shown in figure 3. The retrogradicity (7"} defined in (3) can
be expressed in the appropriate form

_ (@P/3T),~(dP/dT),
n(T) = (dP/aT), ’ (7)
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Fi1cURE 3. Pressure-temperature diagram, combined for regular (r < 0) and retrograde (r > 0)
fluids. The vapour-pressure curve is labelled o and the Wilson line W. Vapour states of
supersaturation are approximately bounded by o and W.

which describes the difference in slopes between isentropes and the vapour-pressure
curve o. For r > 0, isentropes are steeper than the vapour-pressure curve and
condensation occurs on compression; for r < 0, isentropes are less steep than the
vapour-pressure curve and condensation occurs on expansion, as in supersonic-nozzle
experiments (for example Wegener & Wu 1977). In figure 3, the isentropes are
extended across the saturation boundary, corresponding to supersaturated vapour
states, to the curve of spontaneous homogeneous nucleation or ‘Wilson line’. These
non-equilibrium states are found insupersonic-nozzle and other expansion experiments
and play an important role in shock splitting.

2.1. Condensation of supersaturated vapour

The delayed condensation of metastable (supersaturated) vapour originates at a point
near the Wilson line, where the nucleation rate becomes so large that condensation
is manifested, for example, by light scattering or the appearance of visible condensate,
as in the case of the liquefaction shock. To illustrate the role of retrograde behaviour
in spontaneous condensation, it is useful to ask the following question: Given an
initial supersaturated-vapour state P, v,, what equilibrium state F,, v, will then be
reached by spontaneous condensation ? This question is here simplified as follows: to
find the isobaric state F,, v, reached across a condensation discontinuity with
negligible momentum effects, i.e. using the low-velocity or lame-front approximation.
We thus seek to find the volume change v, —v;. A convenient measure of the initial
supersaturation in this case is v,—v,, where v_ is the saturated-vapour volume at
pressure P, (see figure 4). From Taylor expansions about state o, using the
metastable-vapour coefficients for state (1) and equilibrium-mixture coefficients for
state (2) and the Rankine-Hugoniot condition h,—%, = 0,

’02—’01 = —T(’Ua.—vl)'l‘O(’Ua.—’Ul )2’ (8)

where r = [T, (F,)] is the ‘retrogradicity’ previously described. The equilibrium,
downstream state (IT) will thus be more dense than the metastable, upstream state
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P

Ficure 4. Pressure-volume diagram illustrating constant-pressure condensation from a
supersaturated-vapour state (I) on the Wilson line W to a mixture equilibrium state (I1I).

(I) if r > O (retrograde) and less dense if r < 0 (regular). An important example of
spontaneous condensation of a supersaturated vapour is cloud formation in a rising
mass of warm, moist air (» < 0). The upward convection is driven by buoyancy, that
is the density of the rising mass is less than that of the surrounding atmosphere. Upon
spontaneous condensation, the density of the rising mass is further decreased and the
upward convection is thereby enhanced (see (8)), along with the adiabatic cooling
which produces the condensation. The process thus tends to be self-sustaining as long
as moisture is available: it can be observed in the tops of growing cumulus clouds.
In a retrograde atmosphere, on the other hand, clouds would grow on downward
convection, enhanced by density increase on condensation.

The change in volume predicted by the first-order result (8) may be considered in
terms of the competing effects of latent-heat release (promoting volume expansion)
and the removal of vapour by condensation (promoting volume contraction). The
overall volume change in (8) can be written as a difference,

Vp—v, = Alh_Amrv (9)

where Ay, > 0 is the volume expansion associated with latent-heat release and
A > 0is the volume contraction associated with mass removal. The behaviour will
be ‘regular’ or ‘retrograde’, depending on whether A, or A, dominates, respectively.
For condensation of a mass fraction «, the magnitudes are A, = (0v/0T), AT ~
(/0T)paL/c, and Ay, =~ av,,. With these magnitudes and a = (v,—v,)/v,,. (5, 8)
yield for the normalized volume change

Ap—A

Ve~

B~ (10)

aresult which can be confirmed by combining (8) and (9) diréctly. Thus, in retrograde
condensation (r > 0) the mass removal dominates; in regular condensation (r < 0)
the latent-heat release dominates.

The temperature jump 7, — 7} for the spontaneous, constant-pressure condensation
can be found by a procedure similar to that used to find (8). The result is

T
T2_Tl=(%5) (v,—v,)+0(v,—v,)2 (11)
p
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Figure 5. Expansion flow of supercritical vapour (n-CgF,,) showing phase discontinuities. The
temperature—entropy diagram shows the nearly isentropic expansion path. The arrow in the first
photographic frame (¢ =0) indicates the flow direction. Imitial pressure F, =21 bar. After
Puettendoerfer (1982).

For ideal-gas vapour, the first-order result reduces to

T, v
=1 (12)
T, »n
The entropy jump s, —s, is given by
8,—$ =L<ai7>2 (v,—v,)2+O0(v,—v, )3 (13)
2 1 2% oT s a 1 [-4 1

Equations (8), (11), (12) and (13) represent special solutions for the gasdynamic
condensation adiabat.

2.2. A physical illustration of regqular and retrograde condensation

A simple, quasi-steady nozzle-flow experiment performed by Puettendoerfer (1982)
is shown in figure 5. The expansion tube shown in the figure has a rectangular
cross-section 15 x 20.8 mm wide and 110 mm long. It is closed at the top by a thin
metal diaphragm which separates the tube from a large vacuum chamber above. It
is closed at the bottom by a rigid wall and the two-dimensional nozzle is formed by
semicircular metal inserts. The sidewalls are made of glass, so that two-phase regions
appear as dark (opaque) regions in transmitted light. The test fluid is fluorinated
n-Hexane, with properties similar to octane, maintained at a supercritical initial state
(0) indicated in figure 5, such that an isentropic expansion from the high-pressure-
vapour region passes into the mixture region and thence into the low-pressure-vapour
region.

The flow, initiated by rupturing the diaphragm at time zero, is upward into the
vacuum vessel and may be considered to originate from the small ‘reservoir’ in the
lower part of the tube. The dynamic phase discontinuities, visible in the photographs
as boundaries of the (opaque) mixture regions are approximately identical with the
crossing points of the isentrope and the saturation boundary in figure 5. At time
2.6 ms, for example, the visible boundary between low-pressure vapour and mixture
at the top of the photo corresponds to an evaporation (retrograde expansion)
discontinuity, while the irregular lower boundary corresponds to a regular
condensation.
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2.3. Discontinuity in the equilibrium sound speed at the saturation boundary

In the liquid—vapour region adjacent to a saturation boundary, the isentropic
compressibility of the mixture is increased over that of the single-phase fluid, that
is the mixture is ‘softer’. This can be understood in the case of a retrograde vapour,
for example, where isentropic compression leads to condensation: a given pressure
increase will produce a volume decrease of the vapour, augmented by the condensation
of some fraction of the vapour.

The sound speed ¢, given by c¢* = —v*0P/0v),, is thus discontinuous at the
saturation boundary. A measure of the jump magnitude is provided by the ‘kink’ £,

(0P /30),— (OP/0)yr _ T <aP) (ds>2
T

(OP/30) 1y ¢y \3v/ 7 \dP/,

where the subscript m refers to the equilibrium derivative on the mixture side of the
saturation boundary o and the other derivative corresponds to the single-phase value:
thus, making use of the continuity of v at o, k gives the difference between sound
speeds at the saturation boundary in the form

k(T)

20, (14)

c—cZ,

2
cm

k(T) = 20, (15)
where ¢ is equilibrium sound speed. In figure 6(a), k£ is a measure of the difference
in slopes of the equilibrium isentropes at point g on the saturated-vapour boundary.
The equilibrium sound speed of the mixture is thus always smaller than or equal to
that in the adjacent single-phase region. (The special case of equal sound speeds,
corresponding to k& = 0, occurs at points such as A and B in figure 2, where the
isentrope is tangential to the saturation boundary.)

The ‘kink’ k and ‘retrogradicity’ r are related by

kT (0P\ [&v
—_= = — —_— = -1 >
iy (aT),, (a:t*)p y=120, (16)

where v is the ratio of specific heats in the single phase. For r > 0, the equilibrium
isentrope bends downward at the phase boundary, as shown in figure 6(a). This
situation is associated with equilibrium-state shock splitting (Bethe 1942 ; Zel’dovich
& Raizer 1967). For small-amplitude waves, it can be understood as a splitting into
two compression discontinuities, a forerunner shock and a condensation shock,
which propagate with velocities c and c,, respectively. Values of the parameters (T
and k(T are listed in table 2 and plotted in figure 7.

For sufficiently large ¢,, the kink at the saturation boundary will be mimicked
at higher pressures in the single-phase vapour region, as shown in figure 6(b), this
behaviour being analogous to that of isotherms. The curvature of the isentrope is
represented by the non-dimensional parameter I,

— (2P /3v?),
2(@P/ov),

sometimes referred to as the fundamental gasdynamic derivative or nonlinearity
parameter. For a perfect gas, I' = }(y +1). For the special case in figure 6(b), I’ < 0
over a limited region @, analogous to I' = — 00 at the kink g on the saturated-vapour
boundary. The condition I' < 0 is necessary and sufficient for the existence of
rarefaction shock waves (Bethe 1942; Zel’dovich 1946; Thompson & Lambrakis

r= (17)
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F1oUre 6. (a) Equilibrium and metastable isentropes at the saturated-vapour boundary for the case
of retrograde behaviour (r > 0). W = Wilson line (supersaturation limit), & = saturation boundary;
(b) Analogy of a retrograde kink (r > 0) at g to I" < 0 behaviour (in region G) at higher pressure
in the single-phase vapour region. The isentropes shown are not to scale.

1973). A familiar material for which I" < 0 is the ordinary stretched rubber band,
where v in (17) is replaced by length ! and P by the negative of tension. Indeed,
rarefaction shocks are observed in this case (Kolsky 1969) and in other common
materials, such as quartz (Barker & Hollenbach 1970).

In the experiments reported in this paper, rarefaction shocks are associated with
the kink at point g in figure 6(b): the upstream states lie in the mixture region and
the downstream states in the (dry) vapour region, so that the shock front is coincident
with a phase discontinuity. The flow thus experiences sudden evaporation.

Although it is difficult to calculate reliable values of the fundamental derivative I’
for real substances (Thompson & Lambrakis 1973), an indication of the relation be-
tween retrograde behaviour (r > 0) and negative-I"behaviour is provided by the mini-
mum values of &, required to produce r > 0 and I" < 0 (in the vapour region) for the
van der Waals equation: these values for ¢, are 4.96 and 16.67 respectively. (It should
be noted that this equation yields minimum values which are unrealistically small.)

Both Max Planck (1903) and van der Waals (1908) were aware of retrograde
behaviour and its dependence on a large heat capacity, that is on many internal
(vibrational) degrees of freedom. Bethe, however, dismissed the possibility of such
fluids in his celebrated report (Bethe 1942) and thus reached formally incorrect
conclusions about phenomena such as shock splitting. Of the known fluids, however,
the great majority are retrograde: this can be verified by counting the substances
listed in Chemical Abstracts with more than four carbon atoms, for example. Of the
known solid and solid-liquid systems, the majority are retrograde, including the
minerals of which the Earth is made.

3. Experimental arrangement

The shock tube has proven convenient for the production and study of liquefaction
shocks. In the experiments of Dettleff et al. (1979), performed at the Max-Planck-
Institut fuer Stroemungsforschung in Goettingen, partial and complete liquefaction
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FioURE 7. (a) Plot of the retrogradicity #(T) for FC-75 and n-Octane. (b) Plot of the kink k(T for
FC-75 and n-Octane.

r k

Substance 7=06 T=08 r () T=06 T=08 ky, (T

Argon —0.708 —0.606 — 0.362 0.455 —
n-Octane 0.735 1483  1.493 (0.82) 0.0245 0.146  0.197 (0.89)
FC-75 1.697 2.517 2.55 (0.78) 0.0752 0.254  0.275 (0.85)

TABLE 2. Values of the retrogradicity #(7') and the kink k(T') on the saturated-vapour boundary.
Given values of r.,. and kp,,, lie in the region T, > T > T, (see figure 2)
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FicURrE 8. Observation chamber mounted at the end of the test section of the Rensselaer shock
tube. Pressure transducers are P!, P2 and P®. W = window (with background grid shown in the
vertical window). E = end of the constant-diameter test section. The arrow indicates both the shock
propagation and the flow direction.

S

shocks were produced mainly by reflection of the incident shock at the closed end
of the test section. By virtue of the large density jump, this reflected shock propagates
very slowly away from the closed end and is thus conveniently localized for
observation. In the experiments reported here, performed at Rensselaer, the closed
end is replaced by an open end, followed by a large-diameter, closed observation
chamber (figure 8). The observed flow is thus a discharge emerging from a tube, a
transient flow headed by a shock wave. This arrangement provides a rich, coherent
variety of shock and phase-change phenomena.

The shock tube at Rensselaer has been described by Thompson et al. (1984). It is
heated to an initial test temperature 7T, in the range 80—170 °C: for the test fluids used,
this allows an initial test pressure P, > P (T,) in the range 0.1-8 bar. The
superheated test vapour has a correspondingly high density, which is useful for the
refractive technique of flow visualization (Thompson, Kim & Meier 1985). The
low-pressure regime is not yet explored.

The shock-tube inside diameter is 57.6 mm (R = 28.8 mm), the driver section is
3.50 m long and the test section is 1.67 m long, measured from the diaphragm to the
open end. Three Kistler dynamic pressure transducers type 603B are located 306, 256,
and 206 mm from the open end of the test section. The shock tube, including the
observation chamber, is wound with electrical resistance heating and covered with
ceramic-fibre insulation. With this arrangement, initial test temperatures can be
maintained to within +2 °C. Pressure burst of the diaphragms is achieved by
releasing nitrogen driver gas from the gas bottle. Burst pressures AP between 1 and
40 bars can be selected, using various combinations of diaphragm films. Initial
temperature 7, and pressure F, within the test section and observation chamber are
measured with a thermocouple and a strain-gauge pressure transducer respectively.
Transient data from the three pressure transducers and from a photodiode registering
the flashlamp are stored in a digital transient recorder. The shock signal at the first
pressure transducer is used as an initiating signal.
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Substance

Property FC-75 PP3 n-Octane PP1
Formula CyF, 0 CeFie n-CH,, n-CF,
Molecular weight M 416.06 400.06 114.23 338.04
Boiling point (K) 375.8 374.65 398.82 330.31
Critical temperature T;,(K) 500.21 514.65 568.76 447.7
Critical pressure F,(bar) 16.07 18.81 24.87 19.0
Critical volume v,(cm?®/g) 1.70 1.52 4.31 1.64
Acentric factor o 0.55 0.472 0.394 0.483
&, =c(T.)/R 53.4 53.9 36.8 40.5

TABLE 3. Properties of some retrograde substances

Because the retrograde test gases have high molecular weights, the density of the
test fluid at the contact surface in the shock-tube flow is greater than that of the driver
gas. Typical initial density ratios across the intact diaphragm are = 10; after
diaphragm burst, this ratio increases to & 100, by virtue of driver-gas expansion and
test-fluid compression. To avoid a suspected Rayleigh—Taylor instability, a light
balsawood piston was placed ahead of the diaphragm in many experiments, effectively
replacing the contact surface.

The experimental events reported here took place in the observation chamber
(175 mm diameter x 406 mm long), where the shock system emerges from the open end
of the test section. Visibility of the flow in the photographs taken through the
observation-chamber window depends upon either condensation, or refraction of the
grid lines on a sheet mounted against the cylindrical inner surface of the chamber.

The primary test fluid is a proprietary fluorocarbon, designated FC-75 and based
on perfluoro-Tetrahydrobutylfuran, C;F,;0. The secondary test fluid is also a
proprietary fluorocarbon, designated PP3 and based on perfluoro-1,3-Dimethyl-
cyclohexane, C;F 4: it was used only in the shock stability experiments. Properties
of both test fluids are given in table 3.

4. Computational models

The flow observed in the shock-tube observation chamber is coupled with the
emergence of a liquefaction shock wave from the tube: thus, we are dealing with an
unsteady compressible flow with shock waves and visible phase changes (figure 9).
This complex flow has many features in common with other flows in which fluid is
impulsively set into motion, in ideal gases and even in liquids. The experimental flow
shows several features for which a model is desirable, including the liquefaction shock,
shock splitting into a single-phase forerunner shock and a following condensation
discontinuity, rarefaction shock and a rich flow-field structure which includes a large
ring vortex and additional shock waves. The computational models used are the
following.

4.1. Jump conditions at gasdynamic discontinuities

The Rankine-Hugoniot equation has the alternative forms
(A} = 3o, +0,)[P];  [e] = —4(A+B)v]; (18)

where the square brackets indicate a jump, e.g. [P] = F,— F,. In every case treated,
at least one of the two states (upstream, downstream) is an equilibrium state.
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Ficure 9. Emergence of the liquefaction shock from the open end of the shock-tube test section
into the observation chamber. Flow is from left to right. A curved, vapour-phase forerunner shock
and a condensation discontinuity have split off from the normal liquefaction shock at the triple
point (indicated by the arrow). Initial conditions F, = 0.726 bar, T, = 100 °C. Shock Mach number
M, =1.88.

For shock-tube experiments in which the forerunner-shock velocity is measured,
it is convenient to use real-gas series (Thompson 1983) for the calculation of the
downstream state, which is typically supersaturated vapour. For a shock Mach
number M,, the non-dimensional pressure jump /7 and temperature jump [7'] can be
found from

1 1
=53~ 1)~ g (G+2—2 Y M3~ 1)1..., (19)
[Z:—o]= GH+1G(G+2—2T) H?..., (20)

where IT = [P)/p,ci, H = [h]/ck = II(1—IT/2M?), G is the Grueneisen parameter and
I' is defined in (17). For typical experimental conditions, this series technique is
limited to forerunner shock Mach numbers less than about two.



72 P. A. Thompson, G. C. Carofano and Y.-G. Kim

4.2. Numerical solutions of the inviscid equations of motion
For unsteady flow, the Euler equations can be written in conservative form as

oM OF(M) , 3G(M)

% + 7 +W(M) =0, (21)
where

p ) 7 1

) m2/p+ P mA/p | P
M=|4 | FM=| wi/p |, GM=| &2/p+P |, WM=—| 4/p

B (E+Pym/p (B+P)i/p Y| B+P)/p

8 Sm/p Si/p S/p

In these equations, § is the density and P is the pressure; 7 and 7 are the momentum
components in the axial direction X, and the radial direction ¥ respectively; £ is

the total energy per unit volume and is related to the specific internal energy é by
the expression

25
¢ is zero for planar flow and unity for axisymmetric flow.

The last of equations (21) is a species equation where § represents the mass
concentration of one of the species. The calculations to be presented below are for
a single chemical species but by including this equation the ‘contact surface’
bounding the set of particles initially in the shock tube can be identified as it is
convected downstream by the flow field. The solution of the first four equations
evolves independently of the fifth in this case.

The variables have been non-dimensionalized with respect to the critical state p,,
P, and a length L. Thus, j=p/p, i =m/(p, P}, #=n/(p,B)}, B=E/P,
é=e/(B/p,), P=P/P,, §=8/p,, X=X/L, ¥ =Y/L and 7= UP/p}/L (the
length L will be the tube radius R).

The van der Waals equation of state and a constant specific heat ¢, were used to
relate the pressure to the state variables p and e. For single-phase states

é =

. (E m2+ﬁ2) 22)

s 8T .. . &T .. . .. & (3 )
P_3—;5 302, e—Zc 3, §=¢,InT+In 3 1], (23)

where T' = T/T, is the temperature, § = s/R is the entropy and é, = ¢,/ R. The critical
compressibility factor is Z, = P,/(Rp, T, ) = 2 for this state equation. The integration
constants in the expressions for ¢ and § were set equal to zero.

The sound speed, & = ¢/(P./p,)* was calculated using the thermodynamic identity

a2 (a P\ Z,T (615)2
=\ + —=] -

0p/ 1 &,p* \OT/;
In the two-phase region the following saturation-property descriptions of Barieau
(1966) were used:

(24)

3(p1—Fy) (6—p,—h) =lnﬁ1(3—ﬁv)
(3—py) (B8=5)) (v +5)) py(3—5)

T =33-5,)3=5)B+5). Pr=p.h(B=F,—h),
A ﬁv(3_ﬁv) A ﬁ1(3—ﬁ1) I;’S/ _ ﬁvﬁl(ﬁ_ﬁv_ﬁl)
pv = f N PN 1~ T A AT o = .
1,3—-2p,—p) oA3—Py—2p) T,

o
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The subscript o refers to the saturation boundary as before; g, g, are the reduced
vapour and liquid densities respectively, on this boundary. The prime denotes
differentiation with respect to reduced temperature. For a mixture,

LIS Sl A ( —P) (25)
P h Ay PP ~P.)
é=(1—x)é +xé =6”T”—3<ﬁ +4,— h ﬁ) (26)
1 v Zc ,DA ’
3 A p 4 3 3
8=(l—x)sl+xsv=cvln’.f’,,+(l—x)ln<7—1)+xln<7—1), (27)
/1 Pv

where z is the mixture quality. Using the definition ¢, = (Je/0T), and (26) the mixture
specific heat is

. . - o A7 A + A/ ~

Cym = Cv_3Zc [p1+pv_'wl;|' (28)

The mixture sound speed was evaluated from (24) with the first term set equal to
zero since pressure depends only on temperature in the two-phase region. The result
is, for the van der Waals equation,

AT

A

P

The conservation equations were solved using the shock-capturing, finite-difference
scheme of Harten (1983). The jump conditions implicit in the Euler equations are
inherently satisfied and shocks are formed automatically in the calculation. The
algorithm is described for a perfect-gas flow by Yee, Warming & Harten (1982, 1983).
Carofano (1984) worked out the details for a more general equation of state.

The calculation was started with a planar shock advancing down the tube; the
initial data were obtained from the Rankine—Hugoniot jump conditions and equation
of the state. Boundary conditions and the two-dimensional grid are discussed by
Carofano (1984).

4.3. Equations of state

For calculation of the Rankine—Hugoniot jump conditions at shock and condensation
discontinuities, the two-term virial equation (Tsonopoulos 1974), modified Benedict—
Webb—Rubin or ‘BWR 44’ equation (Yamada 1973) and an extended virial equation
due to Hobbs (1983) were used. Most of the data reduction was performed with the
BWR equation. The equilibrium two-phase sound speeds were calculated from the
BWR equation using formulations from Bursik & Hall (1981).

The use of the self-consistent van der Waals equation in the numerical solutions
of the inviscid equations of motion means that those results must be considered
semi-quantitative when the fluid deviates from an ideal-gas state.

5. Basic features of the emerging flow in the observation chamber
5.1. General features

The condensing flows considered in this paper are headed by a single liquefaction
shock. As this shock emerges from the shock tube, the shock front and following flow
become three dimensional as shown in figure 9. A number of observed effects require
only that the fluid be compressible and are thus, to a large extent, independent of
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FioUrE 10. Mach construction, showing the first-signal expansion front E which originates when
the plane main shock MS reaches the tube corner C. The diffracted shockfront is labelled DS. The
expansion front E is centred on point O, originating at the corner C and convected with the
{(undisturbed) flow behind the shockfront MS. (@) Subsonic flow in the laboratory frame, u, < c,;
(b) Supersonic flow in the laboratory frame, resulting in a ‘Mach-trumpet’ configuration:
MC = Mach cone.

the test fluid: the formation of a large ring vortex (visible in cross-section as hollow
rings near the end of the shock tube in figure 9) is even similar to that observed in
essentially incompressible fluids which are impulsively set into motion (Maxworthy
1977; Didden 1979). We begin by describing the general features of the emerging flow
for a compressible fluid.

The basic motion in the laboratory frame can be understood as an outward flow of
the compressed fluid from the tube, toward the right in figure 9, and expanding
radially. The main shock advances to the right faster than the following fluid and
continually sets ‘new’ fluid into motion behind it. The radial expansion of the flow
from the tube can be understood with the help of a Mach construction similar to that
given by Skews (1967a, b) and illustrated in figure 10. The construction differs
according to whether the flow behind the shock front is subsonic or supersonic (in
our experiments with liquefaction shocks, the supersonic case is usual, mainly because
the two-phase mixture sound speed ¢, is small). That part of the region behind the
main shock which has not yet been enveloped by the first signal expansion wave E
remains undisturbed and thus preserves a uniform state, identical with the state
inside the tube. Below point B, where the expansion wave intersects the main shock
front, the shock is also undisturbed by the expansion and remains plane: until point B
reaches the shock-tube axis, a diminishing portion of the shock front MS will thus
remain plane.

The large ring vortex is generated by the rolling-up of the vortex sheet between
the emerging jet of fluid and the initially stationary ambient fluid in the observation
chamber. In common with the expansion front, the vortex thus originates at the tube
corner C, where the flow separates. It is remarkable that the (inviscid) Euler
calculations accurately represent the motion and growth of the vortex (compare Rizzi
1982).

For supersonic flow behind the main shock, the expansion front MC represents the
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Ficure 11. Emerging flow of a perfect gas (y = ) from a tube, with shock Mach number M, = 3
and time c¢,¢/R = 0.49, where R is the tube radius. Velocity vectors and contours of constant
pressure are shown. CS = contact surface.

first characteristic of a quasi-steady Prandtl-Meyer expansion. With increasing time,
the main shock and vortex ring move far downstream, the region in which the flow
is quasi-steady grows and the flow tends toward a steady-state under-expanded nozzle
discharge.

5.2. Ideal-gas flows

Discharge flows similar to that described here have been treated in the experiments
of Payman & Shepherd (1946), Elder & de Haas (1952) and Skews (1967a, b), all of
which involved ideal (or nearly ideal) gases. Comparison of these experiments, our
calculations and our experiments show broad similarities, especially in the internal
shock structure and the flow development with time. In the following, we describe
calculations and certain experimental results for a perfect gas, i.e. an ideal gas with
constant heat capacity.

Figure 11 shows the axisymmetric flow emerging from the tube, calculated for a
flanged boundary in the exit plane of the nozzle. The ‘Mach-trumpet’ structure of
figure 10(b) can be seen here as the first contour of constant pressure. The centre of
the ring vortex can be located within the small, almost circular region and by the
circulation apparent from the velocity vectors. A vortex-associated shock wave has
been formed. The continuous line CS is a contact surface, made up of the fluid particles
which were initially located in the tube-exit plane: the surface can thus be thought
of as a balloon of unlimited extensibility, originally located in the exit plane.

The diffraction of a plane shock front around a right-angle corner (or a sharp corner
of arbitrary angle) is the plane-flow analogue of the axisymmetric flow emerging from
a tube. The plane diffraction is illustrated in figure 12. Instructive shadowgraphs by
Oertel and Schardin are in Van Dyke (1982) and the papers of Skews (1967 a, b). This
flow, sometimes referred to as ‘shock diffraction over a backward-facing step’
remains self-similar (with similarity variables X/c,¢t and Y/c,¢, the origin of co-
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Fieure 12. Diffraction of an emerging shock front with supersonic flow behind the shockfront. S
and 8’ represent the positions of the shock front before and after emergence from the tube
respectively. E is the expansion front. (a) Axisymmetric flow from a tube. (b) Plane, self-similar
flow.

ordinates being at the corner) until the expansion front E reaches a lower boundary L:
that is the flow field changes in size, but not in form, with increasing time. It is
convenient to use this basically simple flow field to test the inviscid-flow computational
model already described: as shown in figure 13 (a), the experimental results of Skews
compare well with the computation (Carofano 1984).

The lines of constant entropy (isentropes) shown in figure 13 (b) have a conceptual
relation to the vortex ring roll-up. Although the isentropes are neither streamlines
nor path lines nor streak lines (see Batchelor 1967 for definitions), the isentropes of
the corresponding transformed stationary flow (Jones, Martin & Thornhill 1959) are
streamlines, geometrically identical with the isentropes in figure 13 (b). It is interesting
that the local entropy maximum (small ellipsoidal contour enclosing the diamond
symbol) corresponds exactly to the vortex core position measured by Skews from
shadowgraphs.

With increasing time, the emerging perfect-gas flow shown in figure 11 tends toward
the steady discharge from an ‘underexpanded’ nozzle, assuming that a quasi-steady
flow from the shock-tube test section is maintained. The computed development of
the flow with time is illustrated in figure 14. An increasing region of steady flow is
left behind the advancing vortex ring: in the case illustrated, the vortex advances
with an axial velocity u, ~ 0.7 ¢,, where ¢, is the speed of sound ahead of the main
shock. In the experiments reported here, however, the long observation times ¢, ¢/R
shown in figure 14 are not available. The observation time ¢, limited by the diameter
of the window is

Coly _ 2R, -
R T M,R

L,

where R, is the radius of the observation-chamber window and R is the tube radius.
The duration of a quasi-steady outflow from the shock-tube test section is determined
by the time of arrival f 4 of the contact surface (or the piston), which depends in turn
on the length L, of the test section and the density ratio p,/p, across the main shock :

Co tcs Lts ~ 1
R M, R(p,/p,)
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F1aURE 13. Self-similar, plane-flow shock diffraction around a right-angle corner for a perfect gas
with y =1, shock Mach number M, = 3. (a) Comparison of the inviscid flow calculation with
experimental results of Skews: § = ‘terminator’ angle (20°) of the low-pressure Prandtl-Meyer
expansion characteristic, = ‘slipstream’ angle (40°) of the contact surface, § = vortex angle (48°).
Constant-pressure contours are shown. The positions of the calculated expansion front E and the
main shockfront agree with the experiments of Skews (indicated by data points). (b) Constant-entropy
contours.
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FicURE 14. Development in time of the flow emerging from the tube. Perfect gas, y = {, shock Mach
number M, = 3. Pressure contours. The cell size for the numerical calculation is larger than that
used for figure 11 by a factor of 20. Values of ¢,¢/R are shown.
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Ficure 15. Computed flows emerging from the shock tube for two different heat capacities é,, with
ashock Mach number M, = 2. (a) Perfect-gas shock structure at low reduced pressure. (b) Real-fluid
shock structure at reduced pressure P, = 0.275 and reduced volume v, = 7.75. The fluid of higher
heat capacity é, = 25 has developed a rarefaction shock in the expansion region, where several
pressure contours coalesce. The non-dimensional time cy¢/R in each flow is approximately 1.1.

Depending on the actual case considered, the observable test time with a quasi-steady
discharge may be limited by either ¢, or ¢.,.

5.3. Aspects of real-gas flow

Consistent with the emphasis of this work on multiatomic fluids of high molar heat
capacity, it is of interest to examine the behaviour of the (still) single-phase gas flow
with increasing heat capacity. The emerging flow, similar to that in figure 11, is shown
for two constant heat capacities ¢, = 10 and é, = 25 (y® = 1.10 and 1.04 respectively)
in figure 15 for a fixed shock Mach number M, = 2. In the perfect-gas case, figure 15(a),
(P,—~0), the structure is qualitatively unchanged from that of figure 11. A
similar statement applies to the real-gas case (figure 15b) with é, = 10. For the real-gas
case ¢, = 25, however, the structure is qualitatively different: part of the expansion
fan has steepened to form a rarefaction shock, which has the general form of the ‘Mach
trumpet’ pictured in figure 10(b). The appearance of the rarefaction shock is
associated with the existence of negative values of the fundamental derivative
(I < 0), as mentioned in §2.
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6. Mixture-evaporation shocks and related phenomena

The rarefaction shocks found in our experiments are of the mixture-evaporation
type referred to in §§1 and 2. Their formation is associated with the discontinuity
in equilibrium sound speed at the saturated-vapour boundary, i.e. the ‘kink’ k of (14),
illustrated in figure 6. The upstream state for these shocks is liquid—vapour mixture,
typically of low moisture, and the downstream state is superheated vapour.

The variety of possible rarefaction discontinuities in fluids is quite remarkable. An
attempt at classification is offered in table 4. The various discontinuities have been
observed or hypothesized. ‘Discontinuity’ is intended to mean an organized,
macroscopic front that is in some sense thin. The classification and terminology are
necessarily somewhat arbitrary and flows with chemical reaction (e.g. a flame front)
are not included. All of the discontinuities listed involve a decrease in pressure and
density across the front and most involve an increase in compressibility with
increasing pressure, i.e. the I mechanism discussed in §2.

The following comments are numbered consistent with the entries in table 4.
(i) The gas-phase rarefaction shock is the classical ‘impossible’ shock wave discussed
in §5 and illustrated in figure 15(b) (£, = 25). Although it has never, to our knowledge,
been observed, it almost certainly will be. (ii) The near-critical rarefaction shock
recently reported by Borisov, Borisov & Kutateladze (1983) differs from (i) in that
the requisite large value of ¢, to achieve I" < 0 is associated with near-critical power
laws [¢,>00 as (T—T,)"*]. The upstream state must, apparently, be very near the
critical point and the downstream state is in the mixture region. The measured
thickness of the shock front is relatively large (=~ 5 cm) and is believed to be related
to the large, near-critical correlation length. (iii) The mixture-evaporation rarefaction
shock is the subject of this section and will be further discussed in the following.
(iv) The liquid-evaporation deflagration is the subject of a future paper. (v) At the time
of writing, a complete liquid-evaporation shock is hypothetical.

The three rarefaction shocks (i), (ii), (iii) are closely related, in that they depend
on some form of I < 0 behaviour. They differ in that they occur in different states
(regions of the (P, v)-plane, for example) and in that the required characteristic heat
capacities ¢, differ greatly: only in a fluid with large ¢, would all three types of
rarefaction shock be possible.

In the following, we confine ourselves to mixture—evaporation shocks. The
calculated shock front shown in figure 16 has a typical ‘Mach-trumpet’ shape similar
to that in figure 15(b) (¢, = 25). The rarefaction shock forming the sides of the trumpet
has developed by the nonlinear (I" < 0) concentration of the distributed expansion
waves. The main compression shock forms the front of the trumpet. Experimentally
observed evaporation—rarefaction shocks are shown in figure 17.

The pressure range of the expansion at the shock-tube exit is of the order F,—F,
and is typically large compared with the maximum possible pressure amplitude of the
evaporation shock. In this situation, the evaporation-shock discontinuity isimbedded
in an isentropic expansion and will evolve toward a double Chapman—Jouquet wave,
or sonic—sonic shock, as discussed by Thompson & Lambrakis (1973) for the case of
one-dimensional unsteady flow. The sonic-sonic solution is thus the natural limiting
form, determined by the characteristic wave velocities, with the normal components
of both the inflow and outflow being sonic, e.g. M = M, = M, = 1. The amplitude
of the evaporation shock is a maximum in this case, as illustrated in the pressure—
volume diagram of figure 18(a). The evolution of the limiting sonic—sonic solution
is shown in figure 18(b).
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Discontinuity Phases ¢, required  Condition Reference
(i) Gas-phase Vapour Large <o Cramer & Kluwick (1984)
rarefaction shock Thompson & Lambrakis
(1973) Zel’dovich (1946)
\Y . .
{(ii) Near-critical x;}[).our None r<o Borisov, Borisov &
rarefaction shock X Kutateladze (1983)
Mi .
(iii) Mixture-evaporation V—L Moderate r<0 This work
rarefaction-shock apour (r=—o)
. - . Liquid
(iv) Liquid-evaporation Mi ? — A future paper
deflagration X Chaves (1983)
Liquid
(v) Complete Vapour Large — Slemrod (1983, 1984)
liquid-evaporation P
shock
Liqui
(vi) Near-spinodal qumd None — Shepherd & Sturtevant
liquid-evaporation apour (1982)
front
(vii) Thermal %]u—ld— None Heat Knuth (1959)
evaporation front apour conduction

TaBLE 4. Rarefaction discontinuities in fluids

(a) ) ()

— . L b

Ficure 16. Computed evaporation-rarefaction shock with initial conditions P, =0.275, 9, = 6.90.
The liquefaction-shock Mach number M, = 1.45 and ¢,t/R = 1.43. (z) Pressure contours showing
the rarefaction shock, with a form similar to the ‘ Mach trumpet’ in figures 10(b) and 11. (b) Contact
surface CS, vapour saturation boundary ¢ and particle path PP. (c) Computed adiabet P(v) along
the particle path. The pressure bar corresponds to a reduced pressure change of 0.1; the volume
bar corresponds to a reduced volume change of 1.

The appearance of this limiting solution in a three-dimensional flow was tested in
the numerical calculation illustrated in figure 16. For the particle path selected, the
flow is quasi-steady and the particle path corresponds to astreamline (the quasi-steady
flow was confirmed by repeating the path and state calculation at later time with
identical results). The fluid states along this path trace out the adiabat in figure 16 (c).
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FicUure 17. Experimental photographs of evaporation-rarefaction shocks. (a) Rarefaction shock
with a low-moisture (y ~ 6%) upstream state. Initial conditions F, = 1.30 bar, T, = 160 °C.
Liquefaction-shock Mach number M, = 2.31 (c, = 88.68 m/s). (b) Processed image for the photo-
graph shown in (a). (¢) Rarefaction shock with a high-moisture (y ~ 20 %) upstream state. Initial
conditions F, =150 bar, T, =160°C. Liquefaction-shock Mach number M,= 2.26
(co = 87.99 m/s).
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Fiaurg 18. Double Chapman—Jouguet (sonic-sonic) evaporation shocks. (@) Construction of the
sonic—sonic solution in the pressure—volume plane. The shaded area corresponds to the entropy jump
[s]. R = Rayleigh line. (b) Development of the sonic—sonic shock in one-dimensional flow in an z—¢
wave diagram, corresponding to piston withdrawal (shaded line). The Chapman-Jouguet charac-
teristics (1) and (2) are parallel, yielding the asymptotic sonic-sonic solution at x = co. PP = particle
path, RS = rarefaction shock.

The shock is artificially broadened by numerical viscosity so it is difficult to determine
its slope where it intersects the streamline. As a guide, the saturation boundary
(figure 16b), which lies approximately midway through the shock transition region,
can be used. A Chapman—Jouquet tangent construction then yields values for M,, and
M,, of 1.016 and 0.986 respectively. The limiting sonic—sonic form thus appears
to be approximately observed.

It is of interest to work out the corresponding shock amplitudes [P], [v] and [s].
The following estimates are based on figure 18 (a). The entropy jump across the shock
is very small, so that it is possible to treat the shock adiabat 1-2 as an isentrope,
with the discontinuity in slope at g given by the ‘kink’ k(7). The curvature of the
isentrope is fixed by the fundamental derivative I' and the non-dimensional
amplitudes are thus fixed by k£ and I'". The calculation yields

Pk
Pg Ch T 2I(k+1)

(29)

L:—] = [la—1)" @I k)p2r (30)

g
where a = (k+ 1)/27 and the subscript g denotes the (vapour-phase) value at the
saturation boundary o. The entropy jump is fixed by the shaded area in figure 18(a),

according to the formula
T(s] = § P do, (31)

where 7' is the average temperature along the adiabat 1-2, taken here to be T;-
This yields
T(s] ke
2 6(k+1)

[1—¥T—1)e+XI—1) @I —3)¢...], (32)
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Ficure 19. Pressure amplitude [P] and entropy jump [s] for sonic—sonic shocks as functions of
reduced temperature 7. The continuous curves represent ‘exact’ calculations using the Hobbs
equation of state, the dashed curves equations (29) and (32). (a) Pressure jump. (b) Entropy jump.

where the small parameter € is given by

1yl
v k

g
It can be shown that the left side of (32) is of order k?/I"%. Comparisons of the above
formulas with exact numerical calculations are shown in figure 19.

The limiting sonic—sonic form of the evaporation shock illustrated in figure 18 can
be verified by the equality of the wave velocities u + ¢ for the two Chapman—Jouguet
characteristics 1 and 2 (this simply means that both sides of the shock front propagate
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with the same velocity). The method of characteristics for simple C* waves in an
homentropic medium, i.e. neglecting the entropy jump across the shock, yields for
the wave velocity W (see e.g. Thompson 1972)

W=u+c= I%)+ const. (33)

It is convenient to rewrite this in terms of the acoustic impedance g=pc =
(— (0P/w),)t and the specific volume v,

W= Jv dg+ const. (34)

For integration along an arbitrary S-shaped path 12, with tangency (sonic)
conditions as in figure 18(a),

— 1 oP P,—-PF
z — or _ 12 1
9 v, — v, I(Ov)s do v, — v, (35)

The right-hand side is just the square of the mass flux through the shock: with the
tangency conditions that the normal components of velocity relative to the shock
front are sonic, this yields

g =gi=g: (36)

Integrating (34) by parts with g, = g, yields for the difference of the wave velocities
W;— W1 _ I _ —

—— =0 —y gdv=g,—39. (37)

With (36), this can be written

W-W,_¢-7 .,

V™0 g+~ (38)
With ¢2 = %, g, =~ g and (30), this can be written
ke, g?—g*
WX 9

W= W~ gt o (39)

For k=1, I'y =1 and ¢, = 80 m/s, a numerical estimate yields W,— W, ~ 4 mm/s:
this small, positive value can be related to the entropy jump across the shock.

The above results implicitly require that r > 0, so that the isentrope enters the
mixture region with increasing pressure. If r < 0 (regular fluid), a stable compression-
evaporation shock is possible, but it would not have a limiting form comparable to
the sonic—sonic shock.

Additional observations from our shock-tube experiments are briefly described
here for completeness. These include shock splitting and measurements of the
two-phase sound speed in the region behind the liquefaction shock.

Shock splitting can be seen in the experimental photograph of figure 9. This
splitting occurs when the main liquefaction shock is weakened, e.g. by three-
dimensional expansion, to the point where condensation behind the shock is no longer
spontaneous and immediate. In this case, the condensation front falls behind, as a
separate discontinuity, leaving a region of supersaturated vapour just behind the
forerunner shock front. (Shock splitting will be described in detail in a following paper,
with the title ‘Wave Splitting in a Large-Heat-Capacity Fluid.’)

Measurements of the liquid-vapour sound speed were made by photographic
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F1cure 20. Transition from smooth to chaotic liquefaction shock fronts with increasing shock Mach
number. The first row of photographs (a—d) shows shock fronts in FC-75 with F, = 1.40 bar,
T, = 120 °C and ¢, = 81.7 m/s ahead of the shock front. The FC-75 experiments in this series were
run with pistons. The second row of photographs (e—k) shows shock fronts in PP3 with F, = 1.70
bar, 7, = 130 °C and ¢, = 84.6 m/s. The PP3 experiments in this series were run without pistons.
The shock Mach numbers M, and computed moisture fractions are, respectively, for each
experiment: (a) 2.10, = 0.7; (b) 2.10, = 0.7; (¢) 2.17, = 0.8; (d) 2.30, = 0.9; (e) 2.22, = 0.9; (f)
2.32, ~ 1.0; (g) 2.31, ~ 1.0; (k) 2.42, ~ 1.0.

observation of the diameter defined by point B in figure 10 (Chen 1984). These
measurements are pertinent to the discussion of liquefaction-shock-front stability in
the following section.

7. Transition from smooth to chaotic liquefaction shockfronts

Over a range of initial conditions, transition from a smooth liquefaction shock front
to a chaotic liquefaction is observed with inecreasing shock Mach number, as shown
in figure 20. The smooth-to-chaotic transition, measured from the onset of visible
small disturbances to the complete disappearance of shock front planarity, occurs
over a relatively narrow range of the shock Mach numbers — although the irregularity
of the shock front increases further at still higher shock Mach numbers. It is natural
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(@) ®)

FicuRE 21. Test for the effect of a driving piston on shock-front stability. Test fluid is PP3 with
F, =170 bar, T, = 130 °C and ¢, = 84.6 m/s. The shock Mach number M, = 2.31 in both cases. (a)
With piston. (b) Without piston. Moisture fraction y ~ 1.

to describe this situation as a transition to turbulence (Thompson et al. 1984), the
turbulent region being behind the irregular shock front.

The fluorocarbon test gas in which the chaotic shock fronts are observed is
considerably more dense than the nitrogen driver gas (the density ratio is = 100),
so that the possibility of a Raleigh—Taylor instability exists at the shock-tube contact
surface: in turn, such an incipient instability could conceivably drive the observed
shock-front transition. To test for this possibility, a lightweight balsawood piston was
placed on the test side of the diaphragm, thus effectively replacing the contact
surface. Tests were run at identical initial conditions and shock Mach numbers with
and without pistons (see figure 21). No discernible difference was found, suggesting
that the observed instability is an inherent property of the shock transition, although
downstream disturbances may have an effect on the structure.

The photograph in figure 22(a) of the chaotic liquefaction shock front inside the
shock tube demonstrates that the observed transition is not associated with the
expansion at the exit of the test section into the observation chamber.

A fascinating variety of surface features appears in the course of the smooth—
chaotic transition. These include, in the approximate order of appearance with
increasing shock Mach number: a small, regular protuberance or ‘button’ at the
centre of the shock front (figure 20a); regular surface waves (figures 20a and 22b);
small-scale surface asperities or eruptions (figures 205 and 22 d) ; surface discontinuities
resembling cracks or fractures (figures 20f and 22¢); large-scale protuberances and
rolls (figures 20d and 22e¢); fully chaotic shock fronts with a remarkable resemblance
to cumulus clouds (figure 22f).

A remarkable form of instability in complete liquefaction shocks was found by
Dettleff et al. (1979). Photographic observation through the clear-liquid phase
downstream of the liquefaction shock front showed numerous and very small vortex
rings which appeared to originate at or near the shock front itself. The stereoscopic
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observations of Dettleff et al. (1982) showed that these vortex rings move toward the
shock front in the frame of the liquid behind the shock, thus defining the sense of
rotation of the toroidal rings: this rotation corresponds to a ‘jet’ through the vortex
core in the direction of the shock front. These circumstances tend to support the
hypothesis that the small-scale asperities on the shock front in our experiments (e.g.
in figure 22 ¢) correspond to the ring vortices, in this case seen from the other (upstream)
side of the shock front as a surface eruption. A test of this hypothesis requires detailed
experiments.

The liquefaction shocks observed by Dettleff et al. were produced by reflection of
an incident shock at the closed end of the Goettingen shock tube. The liquefaction
shock front and the fluid behind it are thus stabilized by the fixed endwall. The
boundary conditions in the Rensselaer experiments are different: in the frame of the
fluid behind the shock the ‘fixed’ endwall is formed by the piston face (say), but the
shock-tube walls are moving at a velocity = 200 m/s, leading to a complicated
viscous flow.

Qualitative support for the shock-front instability reported here is provided by
recent, preliminary experiments in Goettingen (Meier & Thompson 1985}, in which
small projectiles were fired through stationary PP1 test vapour (F, =1 atm,
T, =T, =572 °C) at flight Mach numbers M of 1.76, 2.31, 4.41 and 4.87. At the
lowest two values, the liquefaction bow shock is observed to be smooth, but at
M = 4.41 and higher, it is choatic.

A theoretical basis for the observed shock-front instability may be provided by the
stability analysis of Kontorovich (1957) as described by Fowles & Houwing (1984).
The condition for stability is written in terms of the flow properties behind the shock
front, with a Mach number M in the frame of the shock front (thus M < 1 for almost
all shocks): v
K= (G+1) (;"—1) M< 1, (40)

where G = v(0P/0e),, is the Grueneisen parameter and v,/v is the density ratio across
the shock. Thus, if K > 1, the possibility of an instability exists: in the analysis, the
instability appearsas ‘steady transverse waves’. A sensitive and somewhat ambiguous
parameter in (40) is the mixture sound speed appearing in the M* term. In figure 23,
the value of K is plotted with increasing shock Mach number M, for fixed initial
conditions, for three distinct sound speeds - namely the (in part extrapolated)
experimental-mixture sound speed ¢, the calculated equilibrium sound speed ¢, and
the sound speed ¢4, of dry saturated vapour at the mixture temperature. For the first
two sound speeds, the Kontorovich parameter is well exceeded.

Credibility for the idea of a definite stability limit based on shock strength is lent
by the observed persistence of stable oblique shock fronts, weaker than the main
liquefaction shocks, for example, in figures 20 (b), (f), and 22 (d). The normal Mach
number of these oblique shocks falls below the value of M, at which transition is
observed (see figures 20 and 23).

Theexperimentsdescribed by Dettleffet al. (1979) showed large pressure fluctuations
at the shock-tube endwall (i.e. behind the shock) in cases of complete liquefaction.
The amplitude of these fluctuations varied considerably between experiments, as
shown in figures 11, 12 and 27 of that paper. It is possible that the fluctuations
correspond to shock-front instability in those experiments, although other hypotheses
could be suggested. The wall-transducer pressure measurements in the experiments

reported here appear to show a distinctive pressure signature in cases of chaotic
shock fronts (Yoon 1985).
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(@) ®

() (a)

Fi6URE 22. Various forms of irregularity observed on the shock-front surface in FC-75 experiments.
Initial conditions £, = 1.40 bar, 7, = 120 °C, ¢, = 81.7 m/s. (a) Photograph of a chaotic liquefaction
shock front inside the shock tube, M, = 2.39, y = 0.9. (b) Regular surface waves, M, = 1.64,y ~ 0.4.
(c) Complex surface waves, M, = 2.10, y = 0.7. (d) Small-scale surface asperities, M, = 2.21,
y ~ 0.8. (¢) Surface discontinuity resembling a crack or fracture and beginning larger protuberances,
M, = 2.20, y = 0.8. (f) Fully chaotic shock front, M, = 2.63, y ~ 1.0.
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(e)
FicUrE 22 (e, f). For caption see facing page.

2.5

Ficure 23. Plot of the Kontorovich parameter for shock stability, K = (G+1) (v/v—1) M?
versus shock Mach number M, for FC-75 with F, = 1.4 bar, T, = 120 °C. Curve 1 is based on
equilibrium two-phase sound speed, Curve 2 is based on the sound speed of the vapour phase in
the mixture and 3 is based on the experimentally determined two-phase sound speed. Open circles
(@), (b), (¢), {d) correspond to figures 20(a), (b), (c), (d) respectively.
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9. Concluding remarks

Experiments with retrograde fluids continue to produce unanticipated and, at least
for the experimenters, surprising results. We are keenly aware of the need for
experiments more accurate and complete than those reported here : high-speed motion
pictures of the evolving structures in an unstable shock front would be just one
example.

We would like to express our gratitude for valuable assistance to Dr G. E. A. Meier,
Dr Willi Moehring, Prof. F. F. Ling, Dr Jace Nunziato, Chong Yoon, Edward
Boucheron, Tom DeWitt, Chris Camadella and Lisa Nasgowitz. This paper is
dedicated to the memory of the late Prof. Ernst Becker of Darmstadt, who provided
essential encouragement for this work. Partial support for travel was provided under
National Science Foundation Grant INT-8214100.
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